首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4589篇
  免费   332篇
  国内免费   296篇
  2023年   60篇
  2022年   74篇
  2021年   228篇
  2020年   153篇
  2019年   184篇
  2018年   186篇
  2017年   140篇
  2016年   201篇
  2015年   260篇
  2014年   338篇
  2013年   368篇
  2012年   411篇
  2011年   347篇
  2010年   228篇
  2009年   211篇
  2008年   232篇
  2007年   166篇
  2006年   161篇
  2005年   159篇
  2004年   155篇
  2003年   146篇
  2002年   104篇
  2001年   119篇
  2000年   84篇
  1999年   96篇
  1998年   47篇
  1997年   33篇
  1996年   36篇
  1995年   34篇
  1994年   30篇
  1993年   18篇
  1992年   28篇
  1991年   22篇
  1990年   31篇
  1989年   8篇
  1988年   17篇
  1987年   12篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   6篇
  1974年   3篇
  1954年   2篇
排序方式: 共有5217条查询结果,搜索用时 140 毫秒
101.
102.
103.
Autophagy can sustain or kill tumor cells depending upon the context. The mechanism of autophagy-associated cell death has not been well elucidated and autophagy has enhanced or inhibited sensitivity of cancer cells to cytotoxic chemotherapy in different models. ARHI (DIRAS3), an imprinted tumor suppressor gene, is downregulated in 60% of ovarian cancers. In cell culture, re-expression of ARHI induces autophagy and ovarian cancer cell death within 72 h. In xenografts, re-expression of ARHI arrests cell growth and induces autophagy, but does not kill engrafted cancer cells. When ARHI levels are reduced after 6 weeks, dormancy is broken and xenografts grow promptly. In this study, ARHI-induced ovarian cancer cell death in culture has been found to depend upon autophagy and has been linked to G1 cell-cycle arrest, enhanced reactive oxygen species (ROS) activity, RIP1/RIP3 activation and necrosis. Re-expression of ARHI enhanced the cytotoxic effect of cisplatin in cell culture, increasing caspase-3 activation and PARP cleavage by inhibiting ERK and HER2 activity and downregulating XIAP and Bcl-2. In xenografts, treatment with cisplatin significantly slowed the outgrowth of dormant autophagic cells after reduction of ARHI, but the addition of chloroquine did not further inhibit xenograft outgrowth. Taken together, we have found that autophagy-associated cancer cell death and autophagy-enhanced sensitivity to cisplatin depend upon different mechanisms and that dormant, autophagic cancer cells are still vulnerable to cisplatin-based chemotherapy.Autophagy has a well-defined role in cellular physiology, removing senescent organelles and catabolizing long-lived proteins.1, 2 Under nutrient-poor conditions, the fatty acids and amino acids produced by hydrolysis of lipids and proteins in autophagolysosomes can provide energy to sustain starving cells. Prolonged autophagy is, however, associated with caspase-independent type II programmed cell death. Although the mechanism of autophagy-associated cell death has not been adequately characterized, programmed necrosis or necroptosis has been implicated in some studies.3, 4Given the ability to sustain or kill cells, the role of autophagy in cancer is complex and dependent on the context of individual studies. During oncogenesis in genetically engineered mice, reduced hemizygous expression of genes required for autophagy (BECN1, Atg4, ATG5, Atg7) can accelerate spontaneous or chemically induced tumor formation,5, 6 suggesting that autophagy can serve as a tumor suppressor. Other observations with established cancers suggest that autophagy can sustain metabolically challenged neoplasms, particularly in settings with inadequate vascular access.7, 8 Autophagy has also been shown to protect cancer cells from the lethal effects of some cytotoxic drugs.9, 10Our group has found that cancer cell proliferation,11, 12, 13 motility,14 autophagy and tumor dormancy15, 16 can be regulated by an imprinted tumor suppressor gene, ARHI (DIRAS3), that is downregulated in 60% of ovarian cancers by multiple mechanisms,17, 18 associated with shortened progression-free survival.19 Ovarian cancer cell sublines have been developed with tet-inducible expression of ARHI. In cell culture, re-expression of ARHI induces autophagy and clonogenic ovarian cancer cell death within 72 h.16 In xenografts, re-expression of ARHI arrests cell growth, inhibits angiogenesis and induces autophagy, but does not kill engrafted cancer cells. When ARHI levels are reduced after 6 weeks of induction, dormancy is broken, vascularization occurs and xenografts grow promptly. Treatment of dormant xenografts with chloroquine (CQ), a functional inhibitor of autophagy, delays tumor outgrowth, suggesting that autophagy facilitates survival of poorly vascularized, nutrient-deprived ovarian cancer cells. The relevance of this model to human disease is supported by the recent observation that small deposits of dormant ovarian cancer found on the peritoneal surface at ‘second look'' operations following initial surgery and chemotherapy exhibit autophagy and increased expression of ARHI in >80% of cases.20Ovarian cancer develops in >22 000 women each year in the United States.21 Over the past four decades, the 5-year survival has increased from 37% to ∼50% with optimal cytoreductive surgery and combination chemotherapy using taxane- and platinum-based regimens,21, 22 but long-term survival and cure stand at ∼30% for all stages, due, in large part, to the persistence and recurrence of dormant, drug-resistant ovarian cancer cells. For the past two decades, standard chemotherapy for ovarian cancer has included a combination of a platinum compound and a taxane. Carboplatin and cisplatin are alkylating agents that bind covalently to DNA producing intra- and inter-strand crosslinks that, if not repaired, induce apoptosis and cell death.23, 24 Our previous studies suggest that ∼20% of primary ovarian cancers exhibit punctate immunohistochemical staining for LC3, a biomarker for autophagy that decorates autophagosome membranes, whereas >80% of cancers that have survived platinum-based chemotherapy exhibit punctate LC3.20 Consequently, autophagy might provide one mechanism of resistance to platinum-based therapy.In this report, we have explored mechanism(s) by which ARHI induces autophagy-associated cell death and enhances cisplatin cytotoxicity. Cisplatin has been found to trigger apoptosis by inducing caspase-3 activation and PARP cleavage in ovarian cancer cells.25, 26 We hypothesized that autophagy-associated cell death and autophagy-enhanced sensitivity to cisplatin depend upon different mechanisms and that dormant, autophagic cancer cells might still be vulnerable to platinum-based chemotherapy.  相似文献   
104.
Due to severe water resource shortage, genetics of and breeding for DT (drought tolerance) in rice (Oryza sativa L.) have become one of the hot research topics. Identification of grain yield QTLs (quantitative trait loci) directly related to the DT trait of rice can provide useful information for breeding new drought‐resistant and water‐saving rice varieties via marker‐assisted selection. A population of 105 advanced BILs (backcross introgression lines) derived from a cross between Zhenshan97B and IRAT109 in Zhenshan97B background were grown under drought stress in a field experiment and phenotypic traits were investigated. The results showed that in the target interval of RM273‐RM255 on chromosome 4, three main‐effect QTLs related to panicle length, panicle number, and spikelet number per panicle were identified (LOD [logarithm of the odds] > 2.0). The panicle length‐related QTL had two loci located in the neighboring intervals of RM17308‐RM17305 and RM17349‐RM17190, which explained 18.80% and 20.42%, respectively, of the phenotypic variation, while the panicle number‐related QTL was identified in the interval of RM1354‐RM17308, explaining 11.47% of the phenotypic variation. As far as the spikelet number per panicle‐related QTL was concerned, it was found to be located in the interval of RM17308‐RM17305, which explained 28.08% of the phenotypic variation. Using the online Plant‐GE query system, a total of 13 matched ESTs (expressed sequence tags) were found in the target region, and of the 13 ESTs, 12 had corresponding predicted genes. For instance, the two ESTs CB096766 and CA765747 were corresponded to the same predicted gene LOC_Os04g46370, while the other four ESTs, CA754286, CB000011, CX056247, and CX056240, were corresponded to the same predicted gene LOC_Os04g46390.  相似文献   
105.
Primary ovarian insufficiency (POI) is a common cause of infertility in around 1–2% of women aged <40 years. However, the mechanisms that cause POI are still poorly understood. Here we showed that germ cell-specific knockout of an essential autophagy induction gene Atg7 led to subfertility in female mice. The subfertility of Atg7 deletion females was caused by severe ovarian follicle loss, which is very similar to human POI patients. Further investigation revealed that germ cell-specific Atg7 knockout resulted in germ cell over-loss at the neonatal transition period. In addition, our in vitro studies also demonstrated that autophagy could protect oocytes from over-loss by apoptosis in neonatal ovaries under the starvation condition. Taken together, our results uncover a new role for autophagy in the regulation of ovarian primordial follicle reservation and hint that autophagy-related genes might be potential pathogenic genes to POI of women.Primary ovarian insufficiency (POI), also known as premature ovarian failure (POF), is an ovarian defect characterized by the premature depletion of ovarian follicles before the age of 40 years. POI is a common cause of infertility in women, affecting 1–2% of individuals aged <40 years and 0.1% of individuals aged <30 years.1 Potential etiologies for POI are highly heterogeneous, which include iatrogenic, infectious, autoimmune, metabolic, chromosomal and genetic factors.2 At present, about 25% of all forms of POF can be classified as iatrogenic and are related to cancer treatment, but >50% of the cases remain idiopathic. Though the pathogenic mechanism remains unexplained in the majority of the cases, several observations support a prevalent role of genetic mechanisms in the pathogenesis of idiopathic POI. It has been reported that mutations in FMR1, BMP-15, GDF-9, FOCL2, FSHR, LHR, INHA, GALT and AIRE are associated with POI.3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 The genetic information of POI is very useful for family counseling, because it can predict the female relatives who may be at higher risk for POI and fertility loss in young age. The female carriers will be able to plan their conception before ovarian failure occurs. This requirement is becoming more and more important, because women nowadays tend to conceive ever more frequently in their thirties and forties,10 when the risk of POI in the general population is about 1–2%. However, still few genes could be identified that can explain a substantial proportion of the cases of POI.An important phenotype of POI is infertility, thus POI patients do not have large family histories, and therefore are difficult to study using traditional genetic methods, such as linkage analysis. Animal models of POI have been successfully used to identify candidate genes in this disease. The disruption of meiosis-specific genes, Bcl-2 family apoptotic-related genes, Pten-PI3K-Akt-Foxo3 pathway and Tsc1/2-mTOR signaling pathway result in POI-like phenotype in mice.14, 15, 16, 17 However, as a complex disorder, the genetic etiologies of POI still need to be further investigated to better understand the underlying molecular mechanisms.Macroautophagy (hereafter referred to as autophagy) is the primary intracellular catabolic mechanism for degrading and recycling long-lived proteins and organelles, which is evolutionarily conserved from yeast to mammals.18 During autophagy, isolation membrane enwraps parts of the cytoplasm and intracellular organelles, and fuse with each other forming a double membrane structure, known as the autophagosome. Then the outer membrane of the autophagosome fuses with the lysosome to form autolysosome, in which the cytoplasm-derived materials are degraded by resident hydrolases.19 The primary function of autophagy is to allow cells or organisms to survive nutrient starvation conditions by recycling either proteins or other cellular components. This process is important for cells to adapt their metabolism to starvation caused by decreased extracellular nutrients or by decreased intracellular metabolite concentrations. In addition to nutrient supply and adaptation to stress conditions, a number of observations have revealed that autophagy also functions in many physiological processes in mammalian systems, such as cell death, antiaging mechanisms, innate immunity, development and tumor suppression.20, 21, 22, 23, 24, 25From the discovery of the molecular mechanism underlying autophagy, it was found that autophagy is required for the reproductive process in budding yeast.26 In mammals, fertilization induces massive autophagy to degrade maternal proteins and messenger RNAs, and autophagy functions as a major nutrient-providing system for embryos before their implantation.27 Our recent work indicates that autophagy is required for acrosome biogenesis during spermatogenesis in mice, thus essential to male fertility.24 However, whether autophagy is involved in female gametogenesis or not is still unknown. Here, we showed that germ cell-specific knockout of an essential autophagy induction gene Atg7 led to POI in female mice, and the numbers of the oocytes and follicles were significantly declined in the adult mutant mice. Further investigation revealed that autophagy protected oocytes over-loss during the neonatal transition period. Our results suggest that autophagy-related genes might be pathogenic genes to POI.  相似文献   
106.
107.
108.
Apelin is the endogenous ligand of the G-protein-coupled receptor, apelin–angiotensin receptor-like 1 (APJ). Vascular smooth muscle cells express both apelin and APJ, which are important regulatory factors in the cardiovascular system. Apelin-13 significantly stimulated vascular smooth muscle cell proliferation. However, little is known about the precise cellular mechanisms responsible for vascular smooth muscle cell proliferation induced by apelin-13. Here, we present novel data that indicate the key role of NADPH oxidase 4-derived reactive oxygen species in proliferation of vascular smooth muscle cells treated with apelin-13. Apelin-13 stimulated reactive oxygen species production in a concentration- and time-dependent manner. Furthermore, DPI impaired apelin-13-induced reactive oxygen species generation and vascular smooth muscle cell proliferation. Apelin-13-treatment increased the expression of NADPH oxidase 4 in a dose-dependent manner. Down-regulation of NADPH oxidase 4 using siRNA prevented apelin-13-induced reactive oxygen species generation and vascular smooth muscle cell proliferation. An increase in reactive molecules can trigger the activation of ERK stress-sensitive signaling pathways. Additionally, siRNA-NOX4 and DPI reversed the phosphorylation of ERK induced by apelin-13. Apelin-13 induced vascular smooth muscle cell proliferation by NOX4-derived ROS via the ERK signaling pathway.  相似文献   
109.
In the study, a stable thermophilic microbial consortium with high cellulose-degradation ability was successfully constructed. That several species of microbes coexisted in this consortium was proved by DGGE (denaturing gradient gel electrophoresis) and sequence analysis. The cooperation and symbiosis of these microbes in this consortium enhanced their cellulose-degradation ability. The pretreatment of cassava residues mixing with distillery wastewater prior to anaerobic digestion was investigated by using this microbial consortium as inoculums in batch bioreactors at 55 °C. The experimental results showed that the maximum methane yield (259.46 mL/g-VS) of cassava residues was obtained through 12 h of pretreatment by this microbial consortium, which was 96.63% higher than the control (131.95 mL/g-VS). In addition, it was also found that the maximum methane yield is obtained when the highest filter paper cellulase (FPase), carboxymethyl cellulase (CMCase) and xylanase activity and soluble COD (sCOD) are produced.  相似文献   
110.
耳嫘是一类特殊的原始有肺类软体动物,主要分布于热带、亚热带海陆交汇区的高潮带和潮上带.耳螺在红树林区广泛分布,且资源非常丰富,全世界已知的约240种耳螺中,至少有一半以上的种类在红树林区被记录.本文总结了耳螺与红树林的关系以及中国嗜盐耳螺的种类,综述了红树林区耳螺的种类组成、分布、生态功能、行为等的研究进展,报道了中国...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号